Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".


    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

Solution I: Recursion


    public static boolean isScramble(String s1, String s2) {
        if(s1.length() != s2.length()){
            return false;
        }
        if(s1.length()==1 && s2.length()==1){
            return s1.charAt(0) == s2.charAt(0);
        }

        // 排序后可以通过
        char[] s1ch = s1.toCharArray();
        char[] s2ch = s2.toCharArray();
        Arrays.sort(s1ch);
        Arrays.sort(s2ch);
        if(!new String(s1ch).equals(new String(s2ch))){
            return false;
        }

        for(int i=1; i<s1.length(); i++){        // 至少分出一个字符出来
            String s11 = s1.substring(0, i);
            String s12 = s1.substring(i);
            String s21 = s2.substring(0, i);
            String s22 = s2.substring(i);
//            System.out.println(s1 + "-" + s2 + ": "+ s11 + ", " + s12 + ", " + s21 + ", " + s22);
            // 检测前半部是否匹配
            if(isScramble(s11, s21) && isScramble(s12, s22)){
                return true;
            }
            // 前半部不匹配,检测后半部是否匹配
            s21 = s2.substring(0, s2.length()-i);
            s22 = s2.substring(s2.length()-i);
            if(isScramble(s11, s22) && isScramble(s12, s21)){
                return true;
            }
        }
        return false;
    }

Solution II: Recursion with prune

这里的剪枝条件可以简单设为,所有字符的ASCII的值之和必须相等,这是成为scramble的一个充分条件

    public boolean isScramble2(String s1, String s2) {
        // Two quick recursion exits.
        if (s1.length() != s2.length())
            return false;
        if (s1.equals(s2))
            return true;

        // Prune candidates here to reduce candidate check times.
        int sum = 0;
        for (int i = 0; i < s1.length(); i++) {
            sum += s1.charAt(i) - 'a';
            sum -= s2.charAt(i) - 'a';
        }
        if (sum != 0)
            return false;

        // Partition and match recursively.
        for (int i = 1; i < s1.length(); ++i) {
            for (int j = 1; j < s2.length(); ++j) {
                // i and j are the partition indexes.
                String s1_left = s1.substring(0, i);
                String s1_right = s1.substring(i);
                String s2_left = s2.substring(0, j);
                String s2_right = s2.substring(j);

                if (isScramble2(s1_left, s2_right)
                        && isScramble2(s1_right, s2_left)
                        || isScramble2(s1_left, s2_left)
                        && isScramble2(s1_right, s2_right)) {
                    return true;
                }
            }
        }

        return false;
    }

Solution III: DP 3D

    public static boolean isScrambleDP(String s1, String s2) {
        int len = s1.length();
        if(len != s2.length()){
            return false;
        }
        if(len == 0){
            return true;
        }

        char[] c1 = s1.toCharArray();
        char[] c2 = s2.toCharArray();
        // canTransform 第一维为子串的长度delta,第二维为s1的起始索引,第三维为s2的起始索引
        // canTransform[k][i][j]表示s1[i...i+k]是否可以由s2[j...j+k]变化得来。
        boolean[][][] canT = new boolean[len][len][len];    
        for(int i=0; i<len; i++){
            for(int j=0; j<len; j++){    // 如果字符串总长度为1,则取决于唯一的字符是否想到
                canT[0][i][j] = c1[i] == c2[j];
            }
        }

        for(int k=2; k<=len; k++){        // 子串的长度
            for(int i=len-k; i>=0; i--){            // s1[i...i+k]
                for(int j=len-k; j>=0; j--){    // s2[j...j+k]
                    boolean canTransform = false;
                    for(int m=1; m<k; m++){    // 尝试以m为长度分割子串
                        // canT[k][i][j]
                        canTransform = (canT[m-1][i][j] && canT[k-m-1][i+m][j+m]) ||    // 前前后后匹配
                                              (canT[m-1][i][j+k-m] && canT[k-m-1][i+m][j]);    // 前后后前匹配
                        if(canTransform){
                            break;
                        }
                    }
                    canT[k-1][i][j] = canTransform;
                }
            }
        }

        return canT[len-1][0][0];
    }

Solution IV: use Map

不过以上解法非常的麻烦,而且其实这种3维的DP表里仍然会存储冗余的状态。自己想出了一种非常规的DP求解方法,发现可以用一个哈希表代替3维的DP表,减少对冗余状态的存储。另外这里的DP其实可以跟递归思路一样,自顶向下,而非所谓真正的自底向上的DP。

这里记录子问题求解结果的数据结构我用Map,前面其实偷了一下懒,理论上应该是类似于Pair一样的东西,就是任意两个字符串看成一个pair,然后记录是否为scramble的结果。但是如果真的手动写个类,还有覆盖equals方法,太麻烦了,于是这里偷懒一下,把Pair的形式替换成s1@s2,记成一种特殊字符串。 另外,这里提供了几个快速的递归出口,一个是如果两个字符串长度不相等,可以立刻返回false。另一个是如果两个字符串内容相等,则可以立刻返回true。

    // Memo for dp.
    private Map<String, Boolean> dp = new HashMap<String, Boolean>();
    public boolean isScramble(String s1, String s2) {
        String key = s1 + "@" + s2;
        if (dp.containsKey(key)) {
            return dp.get(key);
        }

        // Two quick recursion exits.
        if (s1.length() != s2.length()) {
            dp.put(key, false);
            return false;
        }
        if (s1.equals(s2)) {
            dp.put(key, true);
            return true;
        }

        // Partition and match recursively.
        for (int i = 1; i < s1.length(); ++i) {
            for (int j = 1; j < s2.length(); ++j) {
                // i and j are the partition indexes.
                String s1_left = s1.substring(0, i);
                String s1_right = s1.substring(i);
                String s2_left = s2.substring(0, j);
                String s2_right = s2.substring(j);

                if (isScramble2(s1_left, s2_right)
                        && isScramble2(s1_right, s2_left)
                        || isScramble2(s1_left, s2_left)
                        && isScramble2(s1_right, s2_right)) {
                    return true;
                }
            }
        }

        dp.put(key, false);
        return false;
    }

REF:

http://blog.csdn.net/fightforyourdream/article/details/17707187

http://blog.csdn.net/whuwangyi/article/details/14105063