Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Solution I:

public class Solution {
    public int trap(int[] height) {
        if (height == null || height.length == 0) {
            return 0;
        }

        int[] left = new int[height.length];
        left[0] = height[0];

        for (int i = 1; i < height.length; i++) {
            left[i] = Math.max(left[i-1], height[i]);
        }

        int[] right = new int[height.length];
        right[height.length-1] = height[height.length-1];

        for (int i = height.length-2; i >= 0; i--) {
            right[i] = Math.max(right[i+1], height[i]);
        }

        int trappedWater = 0;

        for (int i = 0; i < height.length; i++) {
            int curr = Math.min(left[i], right[i]);
            if (curr > height[i]) {
                trappedWater +=  (curr - height[i]);
            }
        }

        return trappedWater;
    }
}

Solution II:

上面的方法非常容易理解,实现思路也很清晰,不过要进行两次扫描,复杂度前面的常数得是2,接下来我们要介绍另一种方法,相对不是那么好理解,但是只需要一次扫描就能完成。基本思路是这样的,用两个指针从两端往中间扫,在当前窗口下,如果哪一侧的高度是小的,那么从这里开始继续扫,如果比它还小的,肯定装水的瓶颈就是它了,可以把装水量加入结果,如果遇到比它大的,立即停止,重新判断左右窗口的大小情况,重复上面的步骤。这里能作为停下来判断的窗口,说明肯定比前面的大了,所以目前肯定装不了水(不然前面会直接扫过去)。这样当左右窗口相遇时,就可以结束了,因为每个元素的装水量都已经记录过了。

http://blog.csdn.net/linhuanmars/article/details/20888505

public int trap(int[] A) {
    if(A==null || A.length ==0)
        return 0;
    int l = 0;
    int r = A.length-1;
    int res = 0;
    while(l<r)
    {
        int min = Math.min(A[l],A[r]);
        if(A[l] == min)
        {
            l++;
            while(l<r && A[l]<min)
            {
                res += min-A[l];
                l++;
            }
        }
        else
        {
            r--;
            while(l<r && A[r]<min)
            {
                res += min-A[r];
                r--;
            }
        }
    }
    return res;
}